(1) See HW 1-problem $2(c)$
(2) $l=L_{4,-1} \leftarrow L_{m, 6}$
(a)

$$
\begin{aligned}
& f: \ell \rightarrow \mathbb{R} \\
& f(x, 4 x-1)=\sqrt{1+4^{2}} x=\sqrt{17} x
\end{aligned}
$$

$$
\begin{aligned}
(b) & f(-1,-5) \\
& =-\sqrt{17} \\
f(2,7) & =2 \sqrt{17}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } l=L_{5}=\left\{(x, y) \in H H \mid(x-2)^{2}+y^{2}=5^{2}\right\} \\
& P=(2,5) \text { and } Q=(-1,4) \\
& d_{H}(P, Q)=\left|\ln \left(\frac{\frac{2-2+5}{5}}{\frac{-1-2+5}{4}}\right)\right|=\left|\ln \left(\frac{1}{\frac{2}{4}}\right)\right|=|\ln (2)| \\
& \\
& =\ln (2) \approx 0.6931 \ldots .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4) } l=L_{\sqrt{3}, 0}=\{(x, y) \mid y=\sqrt{3} x\} \\
& f: l \rightarrow \mathbb{R} \\
& f(x, y)=2 x \\
& f(p)=f(1, \sqrt{3})=2 \cdot 1=2 \\
& f(Q)=f(-1,-\sqrt{3})=-2
\end{aligned}
$$

$$
m=\sqrt{3} \rightarrow \sqrt{1+m^{2}}=\sqrt{4}=2
$$

Want $g(p)=0$ and $g(Q)>0$.
Set $g(x, y)=-[f(x, y)-f(p)]$

$$
=-f(x, y)+2=-2 x+2
$$

So,

$$
\begin{aligned}
& g(P)=g(1, \sqrt{3})=-2(1)+2=0 \\
& g(Q)=g(-1,-\sqrt{3})=-2(-1)+2=4>0 .
\end{aligned}
$$

(5)
(A) See HW 1 -problem 8.
(B) See HW 2 -problem 8 .
(6) Suppose $l_{1} \cap l_{2}$ contain two or more points.

Let $P, Q \in l_{1} \cap l_{2}$ where $P \neq Q$.
Since we are in an incidence geometry there exists a unique line $\overleftrightarrow{P Q}$ through P and Q.
Since $P, Q \in l$, and $P, Q \in \stackrel{\rightharpoonup}{P Q}$ we must then have $l_{1}=\overparen{P Q}$.
Since $P, Q \in l_{2}$ and $P, Q \in \overleftrightarrow{P Q}$ we must then have $l_{2}=\overrightarrow{P Q}$.
Thus $l_{1}=l_{2}=\overleftrightarrow{P Q}$.

